112t-16t^2-50=0

Simple and best practice solution for 112t-16t^2-50=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 112t-16t^2-50=0 equation:



112t-16t^2-50=0
a = -16; b = 112; c = -50;
Δ = b2-4ac
Δ = 1122-4·(-16)·(-50)
Δ = 9344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9344}=\sqrt{64*146}=\sqrt{64}*\sqrt{146}=8\sqrt{146}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-8\sqrt{146}}{2*-16}=\frac{-112-8\sqrt{146}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+8\sqrt{146}}{2*-16}=\frac{-112+8\sqrt{146}}{-32} $

See similar equations:

| (3x+24)+(2x+20)+84=180 | | 3-(8r-3)=-(1+7r) | | 5d^2+20=145 | | x•3x=96 | | (3x+24)+(2x)+84=180 | | -210+3x=-10x+102 | | 3x+24+2x+10+84=180 | | 19x-5=7+15 | | (3x+24)+(2x+84=180 | | -210+3x=-10x+120 | | 5×6x-6=11+5x | | (3x+24)+(2x+10)+84=180 | | 2r+4-7r=-2-4r | | (3x+24)+(2x+13)+84=180 | | 3=-7.2(2+2e) | | 13x-93=89+6x | | 15-5(4x-5)=50 | | 2t2+5t-12=0 | | 5x+21=7 | | 9x+1+3x=180 | | 6+5w=-26+5w | | -58+8x=5x+53 | | 12+6x=3x+6 | | 12-4x=-3x+8 | | 2x(x+4)-5=2x+3 | | 90-4p=8*6-6 | | x²+4=13 | | 3m+3=m-3+3m | | 2(4+3x)=6-(6x+1) | | -218+5x=14x+106 | | 4w+14=16 | | -110+15x=4x+88 |

Equations solver categories